A two step Bayesian approach for genomic prediction of breeding values

نویسندگان

  • Mohammad M Shariati
  • Peter Sørensen
  • Luc Janss
چکیده

BACKGROUND In genomic models that assign an individual variance to each marker, the contribution of one marker to the posterior distribution of the marker variance is only one degree of freedom (df), which introduces many variance parameters with only little information per variance parameter. A better alternative could be to form clusters of markers with similar effects where markers in a cluster have a common variance. Therefore, the influence of each marker group of size p on the posterior distribution of the marker variances will be p df. METHODS The simulated data from the 15th QTL-MAS workshop were analyzed such that SNP markers were ranked based on their effects and markers with similar estimated effects were grouped together. In step 1, all markers with minor allele frequency more than 0.01 were included in a SNP-BLUP prediction model. In step 2, markers were ranked based on their estimated variance on the trait in step 1 and each 150 markers were assigned to one group with a common variance. In further analyses, subsets of 1500 and 450 markers with largest effects in step 2 were kept in the prediction model. RESULTS Grouping markers outperformed SNP-BLUP model in terms of accuracy of predicted breeding values. However, the accuracies of predicted breeding values were lower than Bayesian methods with marker specific variances. CONCLUSIONS Grouping markers is less flexible than allowing each marker to have a specific marker variance but, by grouping, the power to estimate marker variances increases. A prior knowledge of the genetic architecture of the trait is necessary for clustering markers and appropriate prior parameterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Single and Multi-Step Bayesian Methods for Predicting Genomic Breeding Values in Genotyped and Non-Genotyped Animals- A Simulation Study

     The purpose of this study was to compare the accuracy of genomic evaluation for Bayes A, Bayes B, Bayes C and Bayes L multi-step methods and SSBR-C and SSBR-A single-step methods in the different values of π for predicting genomic breeding values of the genotyped and non-genotyped animals. A genome with 40000 SNPs on the 20 chromosom was simulated with the same distance (100cM). The π valu...

متن کامل

ارزیابی ژنومی صفات آستانه ای با معماری های ژنتیکی متفاوت با استفاده از روش‌های بیزی

The current study was carried out to evaluate accuracy of some Bayesian methods for genomic breeding values prediction for threshold traits with different types of genetic architecture based on distribution of gene effect and QTL numbers. A genome consisted of 3 chromosomes of 100 CM with 2000 single nucleotide polymorphisms (SNP) was simulated. The QTL numbers were 0.01, 0.05 and 0.1 of total ...

متن کامل

Effect of Markers Effect Estimation Methods, Population Structure and Trait Architercture on the Accuracy of Genomic Breeding Values

This study aimed to investigate the  effect  of  the method of estimating the effects of markers , QTLs distribution, number of QTLs, effective population size and trait heritability on the accuracy of genomic predictions. Two effective population sizes, 100 and 500 individuals, were simulated by QMSim software. A 100 cM genome including one chromosome was simulated where 500 SNPs and two diffe...

متن کامل

مقایسه روش های بیزی در ارزیابی ژنومی با معماری متفاوت ژنتیکی

The aim of this study was to compare different methods of Bayesian (parameteric) approaches for predicting genomic breeding values of traits with different genetic architecture in different distribution of gene effects, number of  quantitative traits loci, heritability and the number of reference population using simulated data. A genome contained 3 chromosomes, with the length of 100 cM and 10...

متن کامل

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012